适配方法
FlexMatch
介绍
在固定阈值的伪标签算法的基础上,FlexMatch提出课程伪标签法(CPL),实时估计不同类别的学习效果,动态调整阈值各类阈值,从而充分考虑不同类别样本之间的学习难度。
论文引用
@article{zhang2021flexmatch,
title={FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling},
author={Zhang, Bowen and Wang, Yidong and Hou, Wenxin and Wu, Hao and Wang, Jindong and Okumura, Manabu and Shinozaki, Takahiro},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2021}
}
SimMatch
介绍
引入实例相似度,记录有标签数据的特征,使无标签数据与之对比,并且Teacher模型预测的实例相似度与分类结果相互矫正,从而获得更准确伪标签。
论文引用
@inproceedings{zheng2022simmatch,
title={Simmatch: Semi-supervised learning with similarity matching},
author={Zheng, Mingkai and You, Shan and Huang, Lang and Wang, Fei and Qian, Chen and Xu, Chang},
booktitle={Computer Vision and Pattern Recognition},
pages={14471--14481},
year={2022}
}