Skip to content

LID评测数据

Common Language

#准确率-Accuracy

适配方法

线性分类器(Linear Classifier),上游模型输出的特征,经过全局平均池化,再输入到线性分类器中,此线性分类器包含两层Linear层和一层ReLU激活层,线性分类器输入维度与特征向量的维度相等,输出维度与类别数相等。

数据描述

该数据集是从Common Voice中提取出来的,用于训练语种识别系统。数据集共包含45个语种,录音的总时间为45.1小时(即每种语言1小时的数据)。 该数据集已经被并分为训练集、验证集和测试集。从中选出10个语种构建语种识别系统。

数据集构成和规范

源数据量

训练集30h, 验证集7.5h, 测试集7.5h

评测数据量

评测数据选取源数据集的十个语种:"Chinese_China", "Dutch", "English", "Greek", "Italian", "Mangolian", "Russian", "Spanish", "Swedish", "Welsh"

共包括6.7h训练集,1.7h验证集,1.7h测试集。

数据字段

训练集、验证集、测试集数据记录在对应的json文件中,json文件包含“labels”以及“meta_data”两个字段,其中“labels”记录标签的类别和编码,“meta_data”记录具体数据样本的相对路径、标签以及数据集类别(训练集、验证集和测试集)

数据集样例

{
    "labels": {
        "Chinese_China": 0,
        "Dutch": 1,
        "English": 2,
        "Greek": 3,
        "Italian": 4,
        "Mangolian": 5,
        "Russian": 6,
        "Spanish": 7,
        "Swedish": 8,
        "Welsh": 9
    },
    "meta_data": [
        {
            "path": "Chinese_China/train/chch_trn_sp_75/common_voice_zh-CN_20785511.wav",
            "label": "Chinese_China",
            "speaker": "train"
        },
        {
            "path": "English/train/eng_trn_sp_503/common_voice_en_21530721.wav",
            "label": "English",
            "speaker": "train"
        },
        {
            "path": "Italian/train/itln_trn_sp_555/common_voice_it_20265825.wav",
            "label": "Italian",
            "speaker": "train"
        },
        {
            "path": "Spanish/train/spa_trn_sp_227/common_voice_es_19635818.wav",
            "label": "Spanish",
            "speaker": "train"
        },
        {
            "path": "Welsh/train/wls_trn_sp_546/common_voice_cy_19197031.wav",
            "label": "Welsh",
            "speaker": "train"
        }
    ]
}

评价指标

准确率Accuracy

引用

@dataset{ganesh_sinisetty_2021_5036977,
  author       = {Ganesh Sinisetty and
                  Pavlo Ruban and
                  Oleksandr Dymov and
                  Mirco Ravanelli},
  title        = {CommonLanguage},
  month        = jun,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5036977},
  url          = {https://doi.org/10.5281/zenodo.5036977}
}

开源协议

CC BY 4.0